EARLIN: Early Out-of-Distribution Detection for Resource-Efficient Collaborative Inference
نویسندگان
چکیده
Collaborative inference enables resource-constrained edge devices to make inferences by uploading inputs (e.g., images) a server (i.e., cloud) where the heavy deep learning models run. While this setup works cost-effectively for successful inferences, it severely underperforms when model faces input samples on which was not trained (known as Out-of-Distribution (OOD) samples). If could, at least, detect that an sample is OOD, could potentially save communication and computation resources those workload. In paper, we propose novel lightweight OOD detection approach mines important features from shallow layers of pretrained CNN detects ID (In-Distribution) or based distance function defined reduced feature space. Our technique (a) without any retraining models, (b) does expose itself dataset (all parameters are obtained training dataset). To end, develop EARLIN (EARLy INference) takes partitions layer deploys considerably small part device rest cloud. By experimenting using real datasets prototype implementation, show our achieves better results than other approaches in terms overall accuracy cost tested against popular top benchmark datasets.
منابع مشابه
Accurate Inference for the Mean of the Poisson-Exponential Distribution
Although the random sum distribution has been well-studied in probability theory, inference for the mean of such distribution is very limited in the literature. In this paper, two approaches are proposed to obtain inference for the mean of the Poisson-Exponential distribution. Both proposed approaches require the log-likelihood function of the Poisson-Exponential distribution, but the exact for...
متن کاملislanding detection methods for microgrids
امروزه استفاده از منابع انرژی پراکنده کاربرد وسیعی یافته است . اگر چه این منابع بسیاری از مشکلات شبکه را حل می کنند اما زیاد شدن آنها مسائل فراوانی برای سیستم قدرت به همراه دارد . استفاده از میکروشبکه راه حلی است که علاوه بر استفاده از مزایای منابع انرژی پراکنده برخی از مشکلات ایجاد شده توسط آنها را نیز منتفی می کند . همچنین میکروشبکه ها کیفیت برق و قابلیت اطمینان تامین انرژی مشترکان را افزایش ...
15 صفحه اولPruning Convolutional Neural Networks for Resource Efficient Inference
We propose a new formulation for pruning convolutional kernels in neural networks to enable efficient inference. We interleave greedy criteria-based pruning with finetuning by backpropagation—a computationally efficient procedure that maintains good generalization in the pruned network. We propose a new criterion based on Taylor expansion that approximates the change in the cost function induce...
متن کاملnano-rods zno as an efficient catalyst for the synthesis of chromene phosphonates, direct amidation and formylation of amines
چکیده ندارد.
Learning Confidence for Out-of-Distribution Detection in Neural Networks
Modern neural networks are very powerful predictive models, but they are often incapable of recognizing when their predictions may be wrong. Closely related to this is the task of out-ofdistribution detection, where a network must determine whether or not an input is outside of the set on which it is expected to safely perform. To jointly address these issues, we propose a method of learning co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Lecture Notes in Computer Science
سال: 2021
ISSN: ['1611-3349', '0302-9743']
DOI: https://doi.org/10.1007/978-3-030-86486-6_39